If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y-12=0
a = 1; b = -12; c = -12;
Δ = b2-4ac
Δ = -122-4·1·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{3}}{2*1}=\frac{12-8\sqrt{3}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{3}}{2*1}=\frac{12+8\sqrt{3}}{2} $
| 1.20+z=3.5 | | 1.20c=3.5 | | 1000=x-(x×.2) | | 9(a+6)=90 | | 48=103x-49-102x+7+42 | | 9x+8×=17 | | 2(6x-1)=1 | | 39=1/2h×13 | | 2c+10=5c+1 | | 17x÷72=17/72 | | 6x9=-51-6x | | -3c^2-21c-30=0 | | x^2-14+5x+10+8x-14=180 | | 39=1/2h(10+3) | | 4x-28=0.3x+2.31 | | 9.6x+9.6x=0 | | 2(3x+3)=13 | | 42/x+3=9 | | y=3-7@y=9 | | 9x-2=10x+7 | | -5w=-4 | | 0.64-0.15+0.08=0.09x | | 42/x-3=9 | | X+6x=54 | | 4(x-5)-2(x+1)=3(1-x) | | 2x-4/4=4 | | 4y=-34 | | 2-7p=10p=53 | | 5(2c+7)=60 | | 4x2+15x=-9 | | 4(x-5)-2(x+1)=3(x-1) | | 3z/5+6=1 |